Exam. Code : 103205
 Subject Code : 1204

B.A./B.Sc. $5^{\text {th }}$ Semester MATHEMATICS (Number Theory)

Paper-II
Time Allowed-Three Hours] [Maximum Marks-50
Note :-Attempt FIVE questions in all selecting at least TWO questions from each section.

SECTION-A

1. (a) Prove that 4 does not divide $\left(\mathrm{m}^{2}+2\right)$ for any integer m.
(b) Prove that the square of an integer is of the form $3 q$ or $3 q+1$ but not of the form $3 q+2, q \in z$. 5,5
2. (a) If m is an odd integer, show that $8 \mid\left(m^{2}-1\right)$.
(b) If $\operatorname{gcd}(a, 4)=2$ and $\operatorname{gcd}(b, 4)=2$, prove that $\operatorname{gcd}(a+b, 4)=4$.
3. (a) Use the Euclidean Algorithm to find integers x and y such that $\operatorname{gcd}(1769,2378)=1769 x+2378 y$.
(b) Find the general solution (in integers) of the equation $91 x+221 y=1053 . \quad 5,5$
4. (a) Prove that ior each prime $\mathrm{p} \geq 5, \mathrm{p}^{2}+2$ is a composite number.
(b) If $\mathrm{a} \equiv \mathrm{b}(\bmod m)$, prove that $\mathrm{a}^{\mathrm{p}} \equiv \mathrm{b}^{\mathrm{p}}(\bmod m)$ for any positive integer p. 5,5

272(2119)/HH-8978
1
(Contd.)
5. (a) Solve $2 x+7 y \equiv 5(\bmod 12)$.
(b) If $\mathrm{x} \equiv \mathrm{a}(\bmod m)$, prove that either $\mathrm{x} \equiv \mathrm{a}(\bmod 2 \mathrm{~m})$ or $x \equiv a+m(\bmod 2 m)$. 5,5 SECTION-B
6. (a) Solve $x \equiv 5(\bmod 11), x \equiv 14(\bmod 29)$ and $x \equiv 15(\bmod 31)$ by Chinese Remainder Theorem.
(b) If $\operatorname{gcd}(a, 42)=1$, show that $a^{6} \equiv 1(\bmod 168)$.
7. (a) Prove that an integer $p>1$ is a prime number iff $\mid \mathrm{p}-2 \equiv 1(\bmod \mathrm{p})$.
(b) Prove that $\mathrm{a}^{5} \equiv \mathrm{a}(\bmod 30)$ for all integer a. 5,5
8. (a) Show that $18=-1(\bmod 437)$, using Wilson's theorem.
(b) Find remainder when $2 \mid 26$ is divided by 29 .

5,5
9. (a) If $\mathrm{n}=2(2 \mathrm{p}-1)$ where $\mathrm{p}, 2 \mathrm{p}-1$ both are prime >2 then show that $\phi(\mathrm{n}+2)=\phi(\mathrm{n}), \phi(\mathrm{n})$ is Euler's phi-function.
(b) Find all positive integers a, b such that:

$$
\phi(a, b)=\phi(a)+\phi(b) .
$$

10. (a) Using Euler's theorem, find the last two digits in ordinary decimal representation of 3^{400}.
(b) If x and y are positive real numbers, prove that $[\mathrm{x}][\mathrm{y}] \leq[\mathrm{xy}] ;[\mathrm{x}],[\mathrm{y}]$ and $[\mathrm{xy}]$ are greatest integer functions.

5,5

272(2119)/HH-8978
7500

